Bayesian Analysis of Random Coefficient AutoRegressive Models

نویسندگان

  • Dazhe Wang
  • Eli Lilly
  • Sujit K. Ghosh
چکیده

Random Coefficient AutoRegressive (RCAR) models are obtained by introducing random coefficients to an AR or more generally ARMA model. These models have second order properties similar to that of ARCH and GARCH models. In this article, a Bayesian approach to estimate the first order RCAR models is considered. A couple of Bayesian testing criteria for the unit-root hypothesis are proposed: one is based on the Posterior Interval, and the other one is based on Bayes Factor. In the end, two real life examples involving the daily stock volume transaction data are presented to show the applicability of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption

The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...

متن کامل

Bayesian Analysis of Threshold Autoregressive Moving Average Models

In recent years non-linear models have been studied thoroughly and their analysis is facilitated due to increasing developments in computational methodologies. The classical Bayesian linear models are unable to reproduce some of the features frequently found in observed time series, e.g. non-linear processes exhibit such interesting properties as amplitude frequency dependence, limit cycle beha...

متن کامل

Dynamic Econometric Models Bayesian Analysis of Polish Inflation Rates Using Rca and Gll Models *

An extensive discussion of the empirical evidence of changes in the time series properties of inflation was provided in Cecchetti, Hooper, Kasman, Schoenholtz, and Watson (2007). In their paper they used an unobserved component model with stochastic volatility to characterize inflation and AR model with time varying coefficients and stochastic volatility to describe the growth of real GDP. Thes...

متن کامل

Bayesian Inference for Random Coefficient Dynamic Panel Data Models

We develop a hierarchical Bayesian approach for inference in random coefficient dynamic panel data models. Our approach allows for the initial values of each unit’s process to be correlated with the unit-specific coefficients. We impose a stationarity assumption for each unit’s process by assuming that the unit-specific autoregressive coefficient is drawn from a logitnormal distribution. Our me...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004